Files
tenant1/payment_metrics/main.py
2025-11-13 07:57:29 +00:00

842 lines
26 KiB
Python

__generated_with = "0.13.15"
# %%
import sys
import time
from pyspark.sql.utils import AnalysisException
sys.path.append('/opt/spark/work-dir/')
from workflow_templates.spark.udf_manager import bootstrap_udfs
from util import get_logger, observe_metrics, collect_metrics, log_info, log_error, forgiving_serializer
from pyspark.sql.functions import udf
from pyspark.sql.functions import count, expr, lit
from pyspark.sql.types import StringType, IntegerType
import uuid
from pathlib import Path
from pyspark import SparkConf, Row
from pyspark.sql import SparkSession
from pyspark.sql.observation import Observation
from pyspark import StorageLevel
import os
import pandas as pd
import polars as pl
import pyarrow as pa
from pyspark.sql.functions import approx_count_distinct, avg, collect_list, collect_set, corr, count, countDistinct, covar_pop, covar_samp, first, kurtosis, last, max, mean, min, skewness, stddev, stddev_pop, stddev_samp, sum, var_pop, var_samp, variance,expr,to_json,struct, date_format, col, lit, when, regexp_replace, ltrim
from functools import reduce
from handle_structs_or_arrays import preprocess_then_expand
import requests
from requests.adapters import HTTPAdapter
from urllib3.util.retry import Retry
from jinja2 import Template
import json
from secrets_manager import SecretsManager
from WorkflowManager import WorkflowDSL, WorkflowManager
from KnowledgebaseManager import KnowledgebaseManager
from gitea_client import GiteaClient, WorkspaceVersionedContent
from FilesystemManager import FilesystemManager, SupportedFilesystemType
from Materialization import Materialization
from dremio.flight.endpoint import DremioFlightEndpoint
from dremio.flight.query import DremioFlightEndpointQuery
init_start_time=time.time()
LOGGER = get_logger()
alias_str='abcdefghijklmnopqrstuvwxyz'
workspace = os.getenv('WORKSPACE') or 'exp360cust'
workflow = 'payment_metrics'
execution_environment = os.getenv('EXECUTION_ENVIRONMENT') or 'CLUSTER'
job_id = os.getenv("EXECUTION_ID") or str(uuid.uuid4())
retry_job_id = os.getenv("RETRY_EXECUTION_ID") or ''
log_info(LOGGER, f"Workspace: '{workspace}', Workflow: '{workflow}', Execution Environment: '{execution_environment}', Job Id: '{job_id}', Retry Job Id: '{retry_job_id}'")
sm = SecretsManager(os.getenv('SECRET_MANAGER_URL'), os.getenv('SECRET_MANAGER_NAMESPACE'), os.getenv('SECRET_MANAGER_ENV'), os.getenv('SECRET_MANAGER_TOKEN'))
secrets = sm.list_secrets(workspace)
gitea_client=GiteaClient(os.getenv('GITEA_HOST'), os.getenv('GITEA_TOKEN'), os.getenv('GITEA_OWNER') or 'gitea_admin', os.getenv('GITEA_REPO') or 'tenant1')
workspaceVersionedContent=WorkspaceVersionedContent(gitea_client)
filesystemManager = FilesystemManager.create(secrets.get('LAKEHOUSE_BUCKET'), storage_options={'key': secrets.get('S3_ACCESS_KEY'), 'secret': secrets.get('S3_SECRET_KEY'), 'region': secrets.get('S3_REGION')})
if retry_job_id:
logs = Materialization.get_execution_history_by_job_id(filesystemManager, secrets.get('LAKEHOUSE_BUCKET'), workspace, workflow, retry_job_id, selected_components=['finalize']).to_dicts()
if len(logs) == 1 and logs[0].get('metrics').get('execute_status') == 'SUCCESS':
log_info(LOGGER, f"Workspace: '{workspace}', Workflow: '{workflow}', Execution Environment: '{execution_environment}', Job Id: '{job_id}' - Retry Job Id: '{retry_job_id}' was already successful. Hence exiting to forward processing to next in chain.")
sys.exit(0)
_conf = SparkConf()
_params = {
"spark.hadoop.fs.s3a.access.key": secrets.get('S3_ACCESS_KEY'),
"spark.hadoop.fs.s3a.secret.key": secrets.get('S3_SECRET_KEY'),
"spark.hadoop.fs.s3a.aws.region": secrets.get("S3_REGION") or "None",
"spark.sql.catalog.dremio.warehouse" : secrets.get('LAKEHOUSE_BUCKET'),
"spark.hadoop.fs.s3a.aws.credentials.provider": "com.amazonaws.auth.DefaultAWSCredentialsProviderChain",
"spark.hadoop.fs.s3.aws.credentials.provider": "com.amazonaws.auth.DefaultAWSCredentialsProviderChain",
"spark.sql.catalog.dremio" : "org.apache.iceberg.spark.SparkCatalog",
"spark.sql.catalog.dremio.type" : "hadoop",
"spark.hadoop.fs.s3a.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
"spark.hadoop.fs.s3.impl": "org.apache.hadoop.fs.s3a.S3AFileSystem",
"spark.hadoop.fs.gs.impl": "com.google.cloud.hadoop.fs.gcs.GoogleHadoopFileSystem",
"spark.sql.extensions": "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
"spark.jars.packages": "com.amazonaws:aws-java-sdk-bundle:1.12.262,com.github.ben-manes.caffeine:caffeine:3.2.0,org.apache.iceberg:iceberg-aws-bundle:1.8.1,org.apache.iceberg:iceberg-common:1.8.1,org.apache.iceberg:iceberg-core:1.8.1,org.apache.iceberg:iceberg-spark:1.8.1,org.apache.hadoop:hadoop-aws:3.3.4,com.amazonaws:aws-java-sdk-bundle:1.11.901,org.apache.hadoop:hadoop-common:3.3.4,org.apache.hadoop:hadoop-cloud-storage:3.3.4,org.apache.hadoop:hadoop-client-runtime:3.3.4,org.apache.iceberg:iceberg-spark-runtime-3.5_2.12:1.8.1,org.projectnessie.nessie-integrations:nessie-spark-extensions-3.5_2.12:0.103.2,org.apache.spark:spark-sql-kafka-0-10_2.12:3.5.2,za.co.absa.cobrix:spark-cobol_2.12:2.8.0,ch.cern.sparkmeasure:spark-measure_2.12:0.26"
}
_conf.setAll(list(_params.items()))
spark = SparkSession.builder.appName(workspace).config(conf=_conf).getOrCreate()
bootstrap_udfs(spark)
materialization = Materialization(spark, secrets.get('LAKEHOUSE_BUCKET'), workspace, workflow, job_id, retry_job_id, execution_environment, LOGGER)
init_dependency_key="init"
init_end_time=time.time()
# %%
success_payments_reader_start_time=time.time()
success_payments_reader_fail_on_error=""
try:
success_payments_reader_df = spark.read.table('dremio.payments')
success_payments_reader_df, success_payments_reader_observer = observe_metrics("success_payments_reader_df", success_payments_reader_df)
success_payments_reader_df.createOrReplaceTempView('success_payments_reader_df')
success_payments_reader_dependency_key="success_payments_reader"
success_payments_reader_execute_status="SUCCESS"
except Exception as e:
success_payments_reader_error = e
log_error(LOGGER, f"Component success_payments_reader Failed", e)
success_payments_reader_execute_status="ERROR"
raise e
finally:
success_payments_reader_end_time=time.time()
# %%
success_payments_mapper_start_time=time.time()
success_payments_mapper_fail_on_error=""
try:
_success_payments_mapper_select_clause=success_payments_reader_df.columns if False else []
_success_payments_mapper_select_clause.append('''DATE(payment_date) AS payment_date''')
_success_payments_mapper_select_clause.append('''amount AS amount''')
_success_payments_mapper_select_clause.append('''gateway AS gateway''')
_success_payments_mapper_select_clause.append('''payment_method AS payment_method''')
try:
success_payments_mapper_df=spark.sql(("SELECT " + ', '.join(_success_payments_mapper_select_clause) + " FROM success_payments_reader_df").replace("{job_id}",f"'{job_id}'"))
except Exception as e:
success_payments_mapper_df = success_payments_reader_df.limit(0)
log_info(LOGGER, f"error while mapping the data :{e} " )
success_payments_mapper_df, success_payments_mapper_observer = observe_metrics("success_payments_mapper_df", success_payments_mapper_df)
success_payments_mapper_df.createOrReplaceTempView("success_payments_mapper_df")
success_payments_mapper_dependency_key="success_payments_mapper"
success_payments_mapper_execute_status="SUCCESS"
except Exception as e:
success_payments_mapper_error = e
log_error(LOGGER, f"Component success_payments_mapper Failed", e)
success_payments_mapper_execute_status="ERROR"
raise e
finally:
success_payments_mapper_end_time=time.time()
# %%
final_success_payments_start_time=time.time()
print(success_payments_mapper_df.columns)
final_success_payments_fail_on_error=""
try:
try:
final_success_payments_df = spark.sql("select * from success_payments_mapper_df where payment_date >= COALESCE((SELECT MAX(DATE(payment_date)) FROM dremio.successpaymentmetrics), (SELECT MIN(payment_date) FROM success_payments_mapper_df)) AND gateway = \'CCS\'")
except AnalysisException as e:
log_info(LOGGER, f"error while filtering data : {e}")
final_success_payments_df = success_payments_mapper_df.limit(0)
except Exception as e:
log_info(LOGGER, f"Unexpected error: {e}")
final_success_payments_df = success_payments_mapper_df.limit(0)
final_success_payments_df, final_success_payments_observer = observe_metrics("final_success_payments_df", final_success_payments_df)
final_success_payments_df.createOrReplaceTempView('final_success_payments_df')
final_success_payments_dependency_key="final_success_payments"
final_success_payments_execute_status="SUCCESS"
except Exception as e:
final_success_payments_error = e
log_error(LOGGER, f"Component final_success_payments Failed", e)
final_success_payments_execute_status="ERROR"
raise e
finally:
final_success_payments_end_time=time.time()
# %%
high_valued_payments_filter_start_time=time.time()
print(final_success_payments_df.columns)
high_valued_payments_filter_fail_on_error=""
try:
try:
high_valued_payments_filter_df = spark.sql("select * from final_success_payments_df where amount >= 500")
except AnalysisException as e:
log_info(LOGGER, f"error while filtering data : {e}")
high_valued_payments_filter_df = final_success_payments_df.limit(0)
except Exception as e:
log_info(LOGGER, f"Unexpected error: {e}")
high_valued_payments_filter_df = final_success_payments_df.limit(0)
high_valued_payments_filter_df, high_valued_payments_filter_observer = observe_metrics("high_valued_payments_filter_df", high_valued_payments_filter_df)
high_valued_payments_filter_df.createOrReplaceTempView('high_valued_payments_filter_df')
high_valued_payments_filter_dependency_key="high_valued_payments_filter"
high_valued_payments_filter_execute_status="SUCCESS"
except Exception as e:
high_valued_payments_filter_error = e
log_error(LOGGER, f"Component high_valued_payments_filter Failed", e)
high_valued_payments_filter_execute_status="ERROR"
raise e
finally:
high_valued_payments_filter_end_time=time.time()
# %%
total_payments_and_total_value_processed_start_time=time.time()
total_payments_and_total_value_processed_fail_on_error="True"
try:
total_payments_and_total_value_processed_df = final_success_payments_df.groupBy(
"payment_date"
).agg(
count('*').alias("total_payments"),
sum('amount').alias("total_value_processed")
)
total_payments_and_total_value_processed_df, total_payments_and_total_value_processed_observer = observe_metrics("total_payments_and_total_value_processed_df", total_payments_and_total_value_processed_df)
total_payments_and_total_value_processed_df.createOrReplaceTempView('total_payments_and_total_value_processed_df')
total_payments_and_total_value_processed_dependency_key="total_payments_and_total_value_processed"
print(final_success_payments_dependency_key)
total_payments_and_total_value_processed_execute_status="SUCCESS"
except Exception as e:
total_payments_and_total_value_processed_error = e
log_error(LOGGER, f"Component total_payments_and_total_value_processed Failed", e)
total_payments_and_total_value_processed_execute_status="ERROR"
raise e
finally:
total_payments_and_total_value_processed_end_time=time.time()
# %%
aggregate__4_start_time=time.time()
aggregate__4_fail_on_error="True"
try:
aggregate__4_df = final_success_payments_df.groupBy(
"payment_date",
"payment_method"
).agg(
count('*').alias("method_count")
)
aggregate__4_df, aggregate__4_observer = observe_metrics("aggregate__4_df", aggregate__4_df)
aggregate__4_df.createOrReplaceTempView('aggregate__4_df')
aggregate__4_dependency_key="aggregate__4"
print(final_success_payments_dependency_key)
aggregate__4_execute_status="SUCCESS"
except Exception as e:
aggregate__4_error = e
log_error(LOGGER, f"Component aggregate__4 Failed", e)
aggregate__4_execute_status="ERROR"
raise e
finally:
aggregate__4_end_time=time.time()
# %%
data_mapper__5_start_time=time.time()
data_mapper__5_fail_on_error=""
try:
_data_mapper__5_select_clause=aggregate__4_df.columns if False else []
_data_mapper__5_select_clause.append('''payment_date AS payment_date''')
_data_mapper__5_select_clause.append('''payment_method AS payment_method''')
_data_mapper__5_select_clause.append('''method_count AS method_count''')
_data_mapper__5_select_clause.append('''RANK() OVER (PARTITION BY payment_date ORDER BY method_count) AS rank_method''')
try:
data_mapper__5_df=spark.sql(("SELECT " + ', '.join(_data_mapper__5_select_clause) + " FROM aggregate__4_df").replace("{job_id}",f"'{job_id}'"))
except Exception as e:
data_mapper__5_df = aggregate__4_df.limit(0)
log_info(LOGGER, f"error while mapping the data :{e} " )
data_mapper__5_df, data_mapper__5_observer = observe_metrics("data_mapper__5_df", data_mapper__5_df)
data_mapper__5_df.createOrReplaceTempView("data_mapper__5_df")
data_mapper__5_dependency_key="data_mapper__5"
data_mapper__5_execute_status="SUCCESS"
except Exception as e:
data_mapper__5_error = e
log_error(LOGGER, f"Component data_mapper__5 Failed", e)
data_mapper__5_execute_status="ERROR"
raise e
finally:
data_mapper__5_end_time=time.time()
# %%
filter__6_start_time=time.time()
print(data_mapper__5_df.columns)
filter__6_fail_on_error=""
try:
try:
filter__6_df = spark.sql("select * from data_mapper__5_df where rank_method = 1")
except AnalysisException as e:
log_info(LOGGER, f"error while filtering data : {e}")
filter__6_df = data_mapper__5_df.limit(0)
except Exception as e:
log_info(LOGGER, f"Unexpected error: {e}")
filter__6_df = data_mapper__5_df.limit(0)
filter__6_df, filter__6_observer = observe_metrics("filter__6_df", filter__6_df)
filter__6_df.createOrReplaceTempView('filter__6_df')
filter__6_dependency_key="filter__6"
filter__6_execute_status="SUCCESS"
except Exception as e:
filter__6_error = e
log_error(LOGGER, f"Component filter__6 Failed", e)
filter__6_execute_status="ERROR"
raise e
finally:
filter__6_end_time=time.time()
# %%
most_used_payment_method___start_time=time.time()
most_used_payment_method___fail_on_error=""
try:
_most_used_payment_method___select_clause=filter__6_df.columns if False else []
_most_used_payment_method___select_clause.append('''payment_date AS payment_date''')
_most_used_payment_method___select_clause.append('''payment_method AS most_used_payment_method''')
try:
most_used_payment_method___df=spark.sql(("SELECT " + ', '.join(_most_used_payment_method___select_clause) + " FROM filter__6_df").replace("{job_id}",f"'{job_id}'"))
except Exception as e:
most_used_payment_method___df = filter__6_df.limit(0)
log_info(LOGGER, f"error while mapping the data :{e} " )
most_used_payment_method___df, most_used_payment_method___observer = observe_metrics("most_used_payment_method___df", most_used_payment_method___df)
most_used_payment_method___df.createOrReplaceTempView("most_used_payment_method___df")
most_used_payment_method___dependency_key="most_used_payment_method__"
most_used_payment_method___execute_status="SUCCESS"
except Exception as e:
most_used_payment_method___error = e
log_error(LOGGER, f"Component most_used_payment_method__ Failed", e)
most_used_payment_method___execute_status="ERROR"
raise e
finally:
most_used_payment_method___end_time=time.time()
# %%
high_valued_payments___start_time=time.time()
high_valued_payments___fail_on_error="True"
try:
high_valued_payments___df = high_valued_payments_filter_df.groupBy(
"payment_date"
).agg(
count('*').alias("high_valued_payments")
)
high_valued_payments___df, high_valued_payments___observer = observe_metrics("high_valued_payments___df", high_valued_payments___df)
high_valued_payments___df.createOrReplaceTempView('high_valued_payments___df')
high_valued_payments___dependency_key="high_valued_payments__"
print(high_valued_payments_filter_dependency_key)
high_valued_payments___execute_status="SUCCESS"
except Exception as e:
high_valued_payments___error = e
log_error(LOGGER, f"Component high_valued_payments__ Failed", e)
high_valued_payments___execute_status="ERROR"
raise e
finally:
high_valued_payments___end_time=time.time()
# %%
failed_payments_reader_start_time=time.time()
failed_payments_reader_fail_on_error=""
try:
failed_payments_reader_df = spark.read.table('dremio.failedpayments')
failed_payments_reader_df, failed_payments_reader_observer = observe_metrics("failed_payments_reader_df", failed_payments_reader_df)
failed_payments_reader_df.createOrReplaceTempView('failed_payments_reader_df')
failed_payments_reader_dependency_key="failed_payments_reader"
failed_payments_reader_execute_status="SUCCESS"
except Exception as e:
failed_payments_reader_error = e
log_error(LOGGER, f"Component failed_payments_reader Failed", e)
failed_payments_reader_execute_status="ERROR"
raise e
finally:
failed_payments_reader_end_time=time.time()
# %%
failed_payments_mapper_start_time=time.time()
failed_payments_mapper_fail_on_error=""
try:
_failed_payments_mapper_select_clause=failed_payments_reader_df.columns if False else []
_failed_payments_mapper_select_clause.append('''DATE(payment_date) AS payment_date''')
_failed_payments_mapper_select_clause.append('''payment_method AS payment_method''')
_failed_payments_mapper_select_clause.append('''failure_reason AS failure_reason''')
_failed_payments_mapper_select_clause.append('''gateway AS gateway''')
try:
failed_payments_mapper_df=spark.sql(("SELECT " + ', '.join(_failed_payments_mapper_select_clause) + " FROM failed_payments_reader_df").replace("{job_id}",f"'{job_id}'"))
except Exception as e:
failed_payments_mapper_df = failed_payments_reader_df.limit(0)
log_info(LOGGER, f"error while mapping the data :{e} " )
failed_payments_mapper_df, failed_payments_mapper_observer = observe_metrics("failed_payments_mapper_df", failed_payments_mapper_df)
failed_payments_mapper_df.createOrReplaceTempView("failed_payments_mapper_df")
failed_payments_mapper_dependency_key="failed_payments_mapper"
failed_payments_mapper_execute_status="SUCCESS"
except Exception as e:
failed_payments_mapper_error = e
log_error(LOGGER, f"Component failed_payments_mapper Failed", e)
failed_payments_mapper_execute_status="ERROR"
raise e
finally:
failed_payments_mapper_end_time=time.time()
# %%
final_failed_payments_start_time=time.time()
print(failed_payments_mapper_df.columns)
final_failed_payments_df = spark.sql("select * from failed_payments_mapper_df where payment_date >= COALESCE((SELECT MAX(DATE(payment_date)) FROM dremio.failedpaymentmetrics), (SELECT MIN(payment_date) FROM failed_payments_mapper_df))")
final_failed_payments_df.createOrReplaceTempView('final_failed_payments_df')
final_failed_payments_df.persist()
final_failed_payments_end_time=time.time()
final_failed_payments_dependency_key="final_failed_payments"
print(failed_payments_mapper_dependency_key)
# %%
filter__13_start_time=time.time()
print(final_failed_payments_df.columns)
filter__13_fail_on_error=""
try:
try:
filter__13_df = spark.sql("select * from final_failed_payments_df where gateway = \'CCS\'")
except AnalysisException as e:
log_info(LOGGER, f"error while filtering data : {e}")
filter__13_df = final_failed_payments_df.limit(0)
except Exception as e:
log_info(LOGGER, f"Unexpected error: {e}")
filter__13_df = final_failed_payments_df.limit(0)
filter__13_df, filter__13_observer = observe_metrics("filter__13_df", filter__13_df)
filter__13_df.createOrReplaceTempView('filter__13_df')
filter__13_dependency_key="filter__13"
filter__13_execute_status="SUCCESS"
except Exception as e:
filter__13_error = e
log_error(LOGGER, f"Component filter__13 Failed", e)
filter__13_execute_status="ERROR"
raise e
finally:
filter__13_end_time=time.time()
# %%
total_failed_payments___start_time=time.time()
total_failed_payments___fail_on_error="True"
try:
total_failed_payments___df = filter__13_df.groupBy(
"payment_date"
).agg(
count('*').alias("total_failed_payments")
)
total_failed_payments___df, total_failed_payments___observer = observe_metrics("total_failed_payments___df", total_failed_payments___df)
total_failed_payments___df.createOrReplaceTempView('total_failed_payments___df')
total_failed_payments___dependency_key="total_failed_payments__"
print(filter__13_dependency_key)
total_failed_payments___execute_status="SUCCESS"
except Exception as e:
total_failed_payments___error = e
log_error(LOGGER, f"Component total_failed_payments__ Failed", e)
total_failed_payments___execute_status="ERROR"
raise e
finally:
total_failed_payments___end_time=time.time()
# %%
failed_payment_metrics_start_time=time.time()
failed_payment_metrics_fail_on_error="True"
try:
failed_payment_metrics_df = final_failed_payments_df.groupBy(
"payment_date",
"gateway",
"failure_reason"
).agg(
count('*').alias("failure_count")
)
failed_payment_metrics_df, failed_payment_metrics_observer = observe_metrics("failed_payment_metrics_df", failed_payment_metrics_df)
failed_payment_metrics_df.createOrReplaceTempView('failed_payment_metrics_df')
failed_payment_metrics_dependency_key="failed_payment_metrics"
print(final_failed_payments_dependency_key)
failed_payment_metrics_execute_status="SUCCESS"
except Exception as e:
failed_payment_metrics_error = e
log_error(LOGGER, f"Component failed_payment_metrics Failed", e)
failed_payment_metrics_execute_status="ERROR"
raise e
finally:
failed_payment_metrics_end_time=time.time()
# %%
data_writer__15_start_time=time.time()
data_writer__15_fail_on_error=""
try:
_data_writer__15_fields_to_update = failed_payment_metrics_df.columns
_data_writer__15_set_clause=[]
_data_writer__15_unique_key_clause= []
for _key in ['payment_date', 'gateway', 'failure_reason']:
_data_writer__15_unique_key_clause.append(f't.{_key} = s.{_key}')
for _field in _data_writer__15_fields_to_update:
if(_field not in _data_writer__15_unique_key_clause):
_data_writer__15_set_clause.append(f't.{_field} = s.{_field}')
_merge_query = '''
MERGE INTO dremio.failedpaymentmetrics t
USING failed_payment_metrics_df s
ON ''' + ' AND '.join(_data_writer__15_unique_key_clause) + ''' WHEN MATCHED THEN
UPDATE SET ''' + ', '.join(_data_writer__15_set_clause) + ' WHEN NOT MATCHED THEN INSERT *'
spark.sql(_merge_query)
data_writer__15_dependency_key="data_writer__15"
print(failed_payment_metrics_dependency_key)
data_writer__15_execute_status="SUCCESS"
except Exception as e:
data_writer__15_error = e
log_error(LOGGER, f"Component data_writer__15 Failed", e)
data_writer__15_execute_status="ERROR"
raise e
finally:
data_writer__15_end_time=time.time()
# %%
success_payment_metrics_start_time=time.time()
print(total_payments_and_total_value_processed_df.columns)
print(most_used_payment_method___df.columns)
print(high_valued_payments___df.columns)
print(total_failed_payments___df.columns)
success_payment_metrics_df = spark.sql("""
SELECT
COALESCE(a.payment_date, d.payment_date) AS payment_date,
a.total_payments,
a.total_value_processed,
b.most_used_payment_method,
c.high_valued_payments,
d.total_failed_payments
FROM total_failed_payments___df d
FULL OUTER JOIN total_payments_and_total_value_processed_df a
ON a.payment_date = d.payment_date
LEFT JOIN most_used_payment_method___df b
ON a.payment_date = b.payment_date
LEFT JOIN high_valued_payments___df c
ON a.payment_date = c.payment_date
""")
success_payment_metrics_df.createOrReplaceTempView('success_payment_metrics_df')
success_payment_metrics_end_time=time.time()
success_payment_metrics_dependency_key="success_payment_metrics"
# %%
success_payment_metrics_writer_start_time=time.time()
success_payment_metrics_writer_fail_on_error=""
try:
_success_payment_metrics_writer_fields_to_update = success_payment_metrics_df.columns
_success_payment_metrics_writer_set_clause=[]
_success_payment_metrics_writer_unique_key_clause= []
for _key in ['payment_date']:
_success_payment_metrics_writer_unique_key_clause.append(f't.{_key} = s.{_key}')
for _field in _success_payment_metrics_writer_fields_to_update:
if(_field not in _success_payment_metrics_writer_unique_key_clause):
_success_payment_metrics_writer_set_clause.append(f't.{_field} = s.{_field}')
_merge_query = '''
MERGE INTO dremio.successpaymentmetrics t
USING success_payment_metrics_df s
ON ''' + ' AND '.join(_success_payment_metrics_writer_unique_key_clause) + ''' WHEN MATCHED THEN
UPDATE SET ''' + ', '.join(_success_payment_metrics_writer_set_clause) + ' WHEN NOT MATCHED THEN INSERT *'
spark.sql(_merge_query)
success_payment_metrics_writer_dependency_key="success_payment_metrics_writer"
success_payment_metrics_writer_execute_status="SUCCESS"
except Exception as e:
success_payment_metrics_writer_error = e
log_error(LOGGER, f"Component success_payment_metrics_writer Failed", e)
success_payment_metrics_writer_execute_status="ERROR"
raise e
finally:
success_payment_metrics_writer_end_time=time.time()
# %%
finalize_start_time=time.time()
metrics = {
'data': collect_metrics(locals()),
}
materialization.materialized_execution_history({'finalize': {'execute_status': 'SUCCESS', 'fail_on_error': 'False'}, **metrics['data']})
log_info(LOGGER, f"Workflow Data metrics: {metrics['data']}")
finalize_end_time=time.time()
spark.stop()